Sodium Nitroprusside Dihydrate - 10mM in DMSO, high purity , CAS No.13755-38-9(DMSO)

Item Number
S408238
Grouped product items
SKUSizeAvailabilityPrice Qty
S408238-1ml
1ml
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$350.90

Potent vasodilator working through releasing NO spontaneously in blood.

View related series
Compound libraries (0)

Basic Description

SynonymsFerrate(2-),pentakis(cyano-kC)nitrosyl-,sodium, hydrate (1:2:2), (OC-6-22)-
Specifications & PurityMoligand™, 10mM in DMSO
Biochemical and Physiological MechanismsSodium Nitroprusside Dihydrate is a potent vasodilator working through releasing NO spontaneously in blood.
Storage TempStore at -80°C
Shipped InIce chest + Ice pads
GradeMoligand™
Product Description

Information

Sodium Nitroprusside Dihydrate is a potent vasodilator working through releasing NO spontaneously in blood.
In vitro

Sodium Nitroprusside is a potent vasodilator. Sodium nitroprusside has potent vasodilating effects in arterioles and venules. Sodium Nitroprusside breaks down in circulation to release nitric oxide (NO). NO activates guanylate cyclase in vascular smooth muscle and increases intracellular production of cGMP. The end result is vascular smooth muscle relaxation, which allow vessels to dilate. Sodium nitroprusside decreases the proliferation of vascular smooth muscle cells.

In vivo

Sodium nitroprusside (5 mg/kg) significantly reduces the intestinal ischemiareperfusion injury as a nitric oxide donor in rats.
Cell Data

cell lines:GIST 882 and TT cells

Concentrations:

Incubation Time:

Powder Purity:

AI Insight

Names and Identifiers

Canonical SMILES [Na+].[Na+].O=N[Fe--](C#N)(C#N)(C#N)(C#N)C#N
Molecular Weight 297.95

Certificates(CoA,COO,BSE/TSE and Analysis Chart)

C of A & Other Certificates(BSE/TSE, COO):
Analytical Chart:

Related Documents

Reviews

Customer Reviews

Citations of This Product

1. Huhu Yin, Xiujing Xing, Wei Zhang, Jin Li, Wei Xiong, Hao Li.  (2023)  A simple hydrothermal synthesis of an oxygen vacancy-rich MnMoO4 rod-like material and its highly efficient electrocatalytic nitrogen reduction.  DALTON TRANSACTIONS,  52  (45): (16670-16679).  [PMID:37916428] [10.1039/D3DT03018K]
2. Kai Hou, Jiaxin Wu, Xingchao Li, Xuesen Zhang, Yongqi Sun, Yue Long, Kai Song.  (2022)  Delayed Light-Driven Actuations after Light Stopping.  Advanced Materials Technologies,  (2): (2201083).  [PMID:] [10.1002/admt.202201083]
3. Kaiyue Gao, Chengming Zhang, Yi Zhang, Xiaoyu Zhou, Shuo Gu, Kehua Zhang, Xiufang Wang, Xiaojie Song.  (2022)  Oxygen vacancy engineering of novel ultrathin Bi12O17Br2 nanosheets for boosting photocatalytic N2 reduction.  JOURNAL OF COLLOID AND INTERFACE SCIENCE,  614  (12).  [PMID:35078082] [10.1016/j.jcis.2022.01.084]
4. Yangfan Ming, Gang Li.  (2021)  One-pot synthesis of FeCu–SSZ-13 using Cu–TEPA as the template by adding iron complexes.  Catalysis Science & Technology,  11  (22): (7467-7474).  [PMID:] [10.1039/D1CY01479J]
5. Yi Jia, Yi-Gang Ji, Qi Xue, Fu-Min Li, Guang-Tao Zhao, Pu-Jun Jin, Shu-Ni Li, Yu Chen.  (2021)  Efficient Nitrate-to-Ammonia Electroreduction at Cobalt Phosphide Nanoshuttles.  ACS Applied Materials & Interfaces,  13  (38): (45521–45527).  [PMID:34541852] [10.1021/acsami.1c12512]
6. Jun Zhao, Chun-Liu Yu, Wei Fang, Ji-Duan Lin, Guo Chen, Xiao-Qin Wang.  (2019)  Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and α-cyclodextrin.  COLLOIDS AND SURFACES B-BIOINTERFACES,  176  (276).  [PMID:30623815] [10.1016/j.colsurfb.2019.01.011]
7. Beibei Zhu, Wei Tang, Yiqian Ren, Xinrui Duan.  (2018)  Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite.  ANALYTICAL CHEMISTRY,  90  (22): (13714–13722).  [PMID:30354067] [10.1021/acs.analchem.8b04109]

References

1. Huhu Yin, Xiujing Xing, Wei Zhang, Jin Li, Wei Xiong, Hao Li.  (2023)  A simple hydrothermal synthesis of an oxygen vacancy-rich MnMoO4 rod-like material and its highly efficient electrocatalytic nitrogen reduction.  DALTON TRANSACTIONS,  52  (45): (16670-16679).  [PMID:37916428] [10.1039/D3DT03018K]
2. Kai Hou, Jiaxin Wu, Xingchao Li, Xuesen Zhang, Yongqi Sun, Yue Long, Kai Song.  (2022)  Delayed Light-Driven Actuations after Light Stopping.  Advanced Materials Technologies,  (2): (2201083).  [PMID:] [10.1002/admt.202201083]
3. Kaiyue Gao, Chengming Zhang, Yi Zhang, Xiaoyu Zhou, Shuo Gu, Kehua Zhang, Xiufang Wang, Xiaojie Song.  (2022)  Oxygen vacancy engineering of novel ultrathin Bi12O17Br2 nanosheets for boosting photocatalytic N2 reduction.  JOURNAL OF COLLOID AND INTERFACE SCIENCE,  614  (12).  [PMID:35078082] [10.1016/j.jcis.2022.01.084]
4. Yangfan Ming, Gang Li.  (2021)  One-pot synthesis of FeCu–SSZ-13 using Cu–TEPA as the template by adding iron complexes.  Catalysis Science & Technology,  11  (22): (7467-7474).  [PMID:] [10.1039/D1CY01479J]
5. Yi Jia, Yi-Gang Ji, Qi Xue, Fu-Min Li, Guang-Tao Zhao, Pu-Jun Jin, Shu-Ni Li, Yu Chen.  (2021)  Efficient Nitrate-to-Ammonia Electroreduction at Cobalt Phosphide Nanoshuttles.  ACS Applied Materials & Interfaces,  13  (38): (45521–45527).  [PMID:34541852] [10.1021/acsami.1c12512]
6. Jun Zhao, Chun-Liu Yu, Wei Fang, Ji-Duan Lin, Guo Chen, Xiao-Qin Wang.  (2019)  Spectroscopic and mechanistic analysis of the interaction between Jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and α-cyclodextrin.  COLLOIDS AND SURFACES B-BIOINTERFACES,  176  (276).  [PMID:30623815] [10.1016/j.colsurfb.2019.01.011]
7. Beibei Zhu, Wei Tang, Yiqian Ren, Xinrui Duan.  (2018)  Chemiluminescence of Conjugated-Polymer Nanoparticles by Direct Oxidation with Hypochlorite.  ANALYTICAL CHEMISTRY,  90  (22): (13714–13722).  [PMID:30354067] [10.1021/acs.analchem.8b04109]

Solution Calculators